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Abstract. We give rigorous bound inequalities for the universal scaling factors with their 
numerical values ( n  = 3,4,  5), of the power spectrum for a renormalisation group equation 
of arbitrary prime order 7 by using a generalisation of the method of Collet-Eckmann- 
Thomas. 

To date there have been both quantitative and  qualitative studies of the power spectrum 
of a bifurcation sequence. First, Feigenbaum (1979,1980) and  Nauenberg and Rudnick 
(1981) approximately calculated the scaling factor of the power spectrum for the 
period-doubling sequence. Then Collet et af (1981), using the method of the renormali- 
sation group equation, gave the lower and  upper bounds on scaling factors by using 
rigorous qualitative analysis. However, attention has been restricted to the period- 
doubling sequence only. We will try to generalise these methods to arbitrary period-n- 
tupling sequences of higher order in multifurcation phenomena. Here our generalisa- 
tion is with respect to the latter only (Collet eta1 1981), but we published a generalisation 
of the former (Feigenbaum 1979, 1980) elsewhere (Peng et a1 1985). In  our studies 
we found that the power spectrum of multifurcation sequences has an  important 
characteristic: their subcomponents have strongly coupled phase factors, while the odd 
subcomponents of a bifurcation sequence d o  not. These phase factors make the power 
spectrum of each subcomponent ( v )  at the same level N form a finite automorphism 
group transformation. When the order 7 of the renormalisation group equation 
approaches infinity, the familiar model of a-shift automorphism appears. These 
characteristics might help us understand the essential nature of chaotic spectra. 

In one-dimensional maps the universality and scaling of period-7-tupling sequences 
are concisely described by the 7-multifurcation functional renormalisation group 
equation 

CF 'I ( A , # )  = -A,cp ( x )  c p ( O ) =  1 cp'(0) = 1. (1) 

Here 7 is an  arbitrary prime. It is very easy to extend 7 to any integer n ;  only some 
indices, such as p, need to be changed, i.e. p = ( n  - 1112 (or  n /2 )  when using any odd 
(or  even) integer n for the period. 0 indicates the composition of functions and cp is 
a universal invariant function. The universal scaling ratio for a period-7-tupling 
sequence is A,, =CY, '  = - -cp'- '  (1) .  We can define a map based on (1 ) .  We have the 
orbit families {cp'(x)lcp'= 0 cp, c p ' = x , j ~  N }  for any point X E  (-1,  1 )  = I .  We have 
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that for some initial point X ~ E  R c I (Cl is a non-wandering set), orbit families {p'(xo)} 
are almost periodic. In addition, we note that the measure of the set R on the I interval 
is non-zero (Jakobsen 1981). We can choose xo = 0 and give the representation of the 
line spectrum (Nauenberg and Rudnick 1981, Collet et a1 1981) of map families in 
the frequency regions: 

N w h e r e q = k / p , p = p N : = 7  , w 0 = p - ' ,  k = l , 2  ,..., v - l ( m o d T ) a n d i = - .  
When p is large enough, since (p'(0)) is almost periodic, the limit (2) and (3) 

exists. For generality, we will discuss the averaged square amplitude A; at level N :  

(4) 

m=O m ' = m + l  

em,"= " c o s [ 2 ~ ( m - m ' ) v / v ]  bJ, = p J + m l ' - l ( 0 )  v = O , l ,  . . . )  7-1 .  ( 5 )  

We note that here we have the strongly phase coupled factors exp( - i 2 7 " / 7 )  among 
each amplitude bJ, for k (mod 7). But these phase factors are precisely 7-primitive 
roots of 1, which form the independent unit system of the 7th real cyclotomic field. 

According to the analysis by Feigenbaum (1979, 1980) a scaling function relation 
should exist in the difference of amplitudes between two successive orbits, defined as 

= bJ, - bk,. By using this identity, ( 5 )  can be rewritten as for v = 1 , 2 , .  . . , 7 - 1: 

and, for v = 0, 

Note that max,,,,,,(-e;,,.) = 1. Obviously, for the power spectrum with different 
subcomponents v at the same level N we have from (6) and ( 7 )  theorem 1. 

Theorem 1 .  The main subcomponent ( v  = 0) of the power spectrum is larger than any 
other subcomponents ( v  # 0 mod v), namely A; > AL. 

This result is supported by all experimental results (Linsay 1981, Wang et a1 1984) 
which have been observed. Other subcomponents (vZ0) at the same level N are 
dominated by the phase factors e;,,.. They have rigorous symmetry and cyclometric 
properties. 

From (6) we obtain 

A; = f (-e:,i)Bh ( 1 s v s (7 - 1)/2 =: p )  
I = '  
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All subcomponents v = 1 , 2 , .  . . , 7 - 1 have the symmetry Ah = AL-" and satisfy 

( A L . .  . A L ) T = p (  9 L . .  . 9$)T 

where T stands for the transpose and  p is a matrix formed by the elements e& which 
belong to the 7 th  real cyclomotic field. 

If we define the ratio between the squared and  the crossed power spectrum as P, 

m=O m ' = m + l  

we have theorem 2 from (6) and (7), as follows. 

Theorem2 There is a restriction relation between the main subcomponent A; and 
the averaged subcomponent spectrum over each v( v # O), i.e. ( A h ) :  

From the constant positive property of the power spectrum we know that P will be 
confined by the inequality (7 - 1)/2 > p > -$. 

For the same order 77 the spectrum ratio of the solution function for the renormalisation 
group equation at different levels N can be estimated. Without loss of generality, we 
discuss the ratio of the averaged peak height of the spectrum between the K t h  and  
M t h  levels: 

Let K and  M be fixed with K > M .  We have 

(011 

(0);  ( - A q )  cp 

K M  v + m 7 ) h  I (0);  p/7)"+tn v h  
zk.1.m m E [CP" 

(011 (10 )  
ki / + m  V K - "  ' M / r m v K - ' "  

= [ ( - A , )  cp 

where [ a ;  b ]  denotes the closed interval with endpoints a, b. Using lemmas 1-3 for 
bounds on a continuous function (see the appendix) we can bound (10) for the same 
m and m':  

(A'I/77)2M6h,e",."l, Se:"' (A'I/~)ZMDki8mK.!?M. 

For the upper bound 

For the lower bound we have, from lemma 3, 
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In  order to estimate the value of Ah we need to discuss the Kth  compound 
derivative ( 1  k s t) ”). We can decompose an arbitrary integer k into a sequence of 
prime t) consisting of its sum and product. We know from number theory that the 
following t) decomposition is valid and one sequence of indices v i ,  rq, corresponding 
to one integer, is unique in a 7-adic system or in lexicographic order: 

H e r e ~ o z O ( q = 0 ) , v q 2 1 ( q > 1 ) ,  v , = l , 2  , . . . ,  t ) - l ( V j , j = O , l ,  . . . ,  r - 1 ) a n d t h e y a r e  
all positive integers. When k is fixed, each vl takes only one value and  r = r (  k )  satisfies 
the inequality r G M - maxq uq + 1. We obtain 

Here U, = M - (U,+. . .+ 
complex expression than in the case of t) = 2 :  

3 1. By the chain rule for differentiation we find a more 

Here, using lemmas 1-3, 

= a,,b2,+l a,,, = (A ,  b;;,:= y; 

To transform the old indices of the summation into new indices r, U, v we obtain 

In a similar way to Collet et a1 (1981), the method of generating functions can be 
generalised. In  order to evaluate A M  we introduce 

where CO:= 1 and CL = 0 for L<O. We obtain the following 
(17): 

recurrence relation from 

(18) 
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From the method of generating functions and (12)-( 15) we have 
- L - l  F ( x )  = c C,xJ c, = ff,x;L-' + f f - x -  

, = ( I  

Substituting back into (16) we obtain 

Theorem 3. For all M > 0, the averaged power spectrum over each subcomponent v 
of the 9-multifurcation renormalisation group equation (1) has the lower and upper 
bound: 

( A q / q ) ' "  S ( A i T b f ) / ( A i ) S  (A,/q)"'EF". (21) 

Corollary. The two successive averaged square amplitudes, i.e. M = 1, have the 
asymptotical bounds 

( A J  9 (AL =: ( ~ d  s ( A J  t7 I%.  
The asymptotic decrease of two successive square amplitudes is restricted by the 
inequality 

f m r n  < -10 lOg(pcl,) (22) 

We note that this estimation of bounds for the same level N is independent of m and 
m'.  This shows the scaling property of $. The approximate numerical solution of the 
renormalisation group equation of order n ( n  = 3 , 4 , 5 )  is known from Zeng et a1 (1984). 
We can calculate the behaviour of p at the points x = 0 or A and obtain the values of 
E and F from (12)-(20). We list these values of E, F, D ,  , fm,, and.fmaX (for n = 3,4 ,  5) 
in table 1. 

Table 1. Calculated Lalues o f  the spectrum bounds for period-n-tupling sequences 

a n h  2.5029 9.2773 38.819 20.128 -45.804 160.0 
E 13.996 9.3074 10.391 28.467 36.319 13.225 
F 1.1088 1.2682 1.2389 1.2819 1.2455 1.1783 
D, 2.493 3.4962 3.4828 9.0261 9.9178 3.3587 
Ln 10.022 23.455 3 8.403 30.50 37.233 52.80 
f,,, 13.989 28.891 43.822 40.055 47.197 58.06 

This result is taken from Collet er a /  (1981 1 and  is the same as  in  this paper 
See Zeng et a /  i 1984). 
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Here we consider the restraint bound of the power spectrum for each subcomponent. 
Because of coupled phase factors among them, the case is slightly more complex than 
the averaged spectrum. We rewrite (8) and  divide the phase factors into both positive, 
-e;,,  > 0 ( i  E i+), and negative, -e:, ,  < O( i E iL), parts and  note the inverse of the matrix 
P 

9; = ‘f h&A’,. - I  

, = I  
P =Ih&} 

We finally obtain the restraint relation of the power spectrum for each subcomponent, 
as follows: 

This result shows that, although the local difference of amplitudes has scaling indepen- 
dent of m, m’, the global power spectrum of each subcomponent A h  is naturally 
modulated by the phase factors ( - e & ) .  A similar case also exists in the multifurcation 
sequences of higher periodic orbits in non-linear mechanical systems when we use the 
renormalisation group method to analyse them (Peng er al 1985). 

We have given rigorous bounds for the scaling factors for the power spectrum of 
period-q-tupling sequences, but the numerical values of these bounds necessarily 
depend on the numerical solution of (1) (Zeng et a1 1984) and on a prior estimate of 
the behaviour of the function in the interval [-1,1]. At present, an  exact description 
of the scaling factors for the power spectrum of period-q-tupling sequences is, to our 
knowledge, still a question which has not yet been solved. We believe that the above 
conclusions are useful in the study of dissipative systems in which multifurcation 
phenomena occur. 

Appendix 

In order to estimate the upper bound for the power spectrum we confine the cp to an  
appropriate solution class of the renormalisation group equation by reasonable assump- 
tions. This is that the cp(x) satisfying equation (1) is continuous on the interval [-1, 11, 
and it belongs to the function class C 3  (cp E C 3 )  and is concave and even (Campanino 
and Epstein 1981, Epstein and Lascoux 1981). From this assumption we can write 
several lemmas on the bound of the function cp as follows. Because these lemmas are 
very simple we omit the proof. 

Lemma 1 .  If cp satisfies equation (1) when x ~ [ - l ,  11, O < A  < 1, then c p ~ [ - l ,  13 and 
c p m  E [-1, 11, for all positive integer m. 

Corollary. When O < h < l  and rE[-1,1], we obtain l lu, l /Sl ,  Ilcpy(Auui)llS1 in the 
former proof of theorem 3. 
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Lemma 2. If cp E C 3  and cp is concave and  even then its second derivative has negative 
bounds whose absolute values are 

Y M  = sup Icp”(x)l= - c p ” ( O )  ym = inf Icp”(x)j = -cp”( 1). 
x c [ - I ,1]  x € [ - l , l ]  

Lemma 3. If the function cp is concave and  even, then the bound of the first derivative 
cpJ = cp’(A“w,) is OG Icp:l S y,,,,AU’. 
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